Tetrahedron Letters 51 (2010) 1504–1507

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Chemoselective glycosylation of carboxylic acid with glycosyl ortho-hexynylbenzoates as donors

You Yang ^{a,b}, Yao Li ^a, Biao Yu ^{a,}*

a State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China **b** Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

article info

ABSTRACT

Article history: Received 14 December 2009 Revised 12 January 2010 Accepted 12 January 2010 Available online 18 January 2010

Keywords: Glycosylation Chemoselective Glycosyl ortho-hexynylbenzoate Ester glycoside **Orthoester** PPh3AuOTf

Protecting groups, widely used in current organic synthesis, often lead to long reaction routes and low overall yield.¹ To increase the synthesis efficiency, protecting groups should be reduced or eliminated as many as possible and the innate reactivity of functional groups should be discriminated as much as possible. $²$ Thus, the development of new chemoselective reac-</sup> tions is demanding. In the course of triterpene saponins synthesis, chemoselective glycosylation of the C3-hydroxyl group and the C28-carboxylic acid of a triterpene is frequently required.³ The available resort is to glycosylate the carboxylic acid selectively with glycosyl bromides, 4 mainly under the phase transfer conditions (PTC).4a–h Some glycosyl bromides are not stable, therefore need to be used immediately after preparation.^{4e} We recently developed a new glycosylation protocol employing glycosyl ortho-hexynylbenzoates as donors and gold(I) as a catalyst.⁵ Incidentally, we found that highly chemoselective glycosylation of carboxylic acid and orthoester formation with alcohol could be realized in the additional presence of $\rm BF_3\text{-}OEt_2/DBU$ (1,8-diazabicyclo[5.4.0]undec-7-ene) and DTBP (2,6-di-tert-butylpyridine), respectively.

This finding was made during the glycosylation of oleanolic acid 2 with 2,3,4,6-tetra-O-benzoyl-D-glucopyranosyl ortho-hex-

* Corresponding author. E-mail address: byu@mail.sioc.ac.cn (B. Yu). The gold(I)-catalyzed glycosylation of acid alcohols with glycosyl ortho-hexynylbenzoates in the presence of BF₃.Et₂O and DBU provided the corresponding ester glycosides chemoselectively in high yield; while with DTBP as an additive instead, orthoester formation with the alcohol was effected selectively. - 2010 Elsevier Ltd. All rights reserved.

> ynylbenzoate 1a [\(Fig. 1](#page-1-0)). Under the standard conditions (0.1 equiv Ph₃PAuOTf, CH₂Cl₂, rt),⁵ coupling of **1a** (1.2 equiv) with acid alcohol 2 led to the ester glycoside 3 and alcohol orthoester 4 in comparable amounts (30% and 40%, respectively, entry 1).^{[6](#page-3-0)} When additional $BF_3 \cdot OEt_2$ (3.0 equiv) was added into the above-mentioned reaction, the 28-COOH of the oleanolic acid 2 was preferably glycosylated, providing the ester glycoside 3 and the bis-sugar derivative 5 in $63%$ and $13%$ yield, respectively; and the orthoester 4 was not detected (entry 2). More surprisingly, introduction of DBU (2.0 equiv) in the above-mentioned reaction system led to the formation of the ester glycoside 3 exclusively in 95% yield (entry 3). Lower loading of the $BF_3 \cdot OEt_2$ (1.5 equiv) and DBU (1.1 equiv) resulted in much lower yield of 3 (50%), but it still remained to be the major product (entry 4). Similar results were observed upon replacement of the DBU with DTBP or Et_3N in the reaction (entries 5 and 6). In the absence of $BF_3 \cdot OEt_2$, the combination of $Ph_3PAuOTf$ $(0.1$ equiv) and DBU or Et₃N (2.0) equiv) could not promote the glycosylation to proceed (entry 7). However, the combination of Ph₃PAuOTf (0.1 equiv) and LiOH, K_2CO_3 , or pyridine (2.0 equiv) promoted the reaction to provide the alcohol orthoester 4 nearly exclusively, albeit in a moderate yield of \sim 30% (entries 8 and 9). The use of DTBP (2.0 equiv) instead as the additive, the yield of 4 was increased to 61% (entry 10). The yield of 4 was further increased to 80% by increasing the loading of Ph_3PAu OTf to 0.2 equiv (entry 11).

^{0040-4039/\$ -} see front matter © 2010 Elsevier Ltd. All rights reserved. doi:[10.1016/j.tetlet.2010.01.039](http://dx.doi.org/10.1016/j.tetlet.2010.01.039)

Figure 1. Examination of the chemoselective glycosylation of oleanolic acid 2 with 2,3,4,6-tetra-O-benzoyl-D-glucopyranosyl ortho-hexynylbenzoate 1a.

 a For a typical procedure for the selective ester glycoside synthesis: To a stirred mixture of the donor 1a (94 mg, 0.12 mmol), oleanolic acid 2 (46 mg, 0.10 mmol), DBU (32 μ L, 0.2 mmol), and freshly activated 4 Å MS (200 mg) in dry CH_2Cl_2 (5 mL) at room temperature was added dropwise BF_3OEt_2 (38 µL, 0.3 mmol) followed by the addition of a newly prepared PPh₃AuOTf in CH_2Cl_2 (0.05 M, 0.2 mL) under argon. After stirring at room temperature for overnight, the mixture was filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography (toluene–EtOAc, 50:1) to afford **3** (98 mg, 95%) as a white solid. b For a typical procedure for the selective alcohol orthoester for-

mation: To a stirred mixture of the donor **1a** (94 mg, 0.12 mmol), oleanolic acid 2 (46 mg, 0.10 mmol), DTBP (45 μ L, 0.2 mmol), and freshly activated 4 Å MS (300 mg) in dry CH_2Cl_2 (5 mL) at room temperature was added dropwise a newly prepared PPh₃AuOTf in CH_2Cl_2 (0.05 M, 0.4 mL) under argon. After stirring at room temperature for overnight, the mixture was filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography (toluene–EtOAc, 30:1) to afford 4 (82 mg, 80%) as a white solid.

Thus, chemoselective glycosylation of the carboxylic acid and the hydroxyl group in oleanolic acid 2 with perbenzoylglucopyranosyl ortho-hexynylbenzoate **1a** could be achieved by employing BF₃.OEt₂ (3.0 equiv)/DBU (2 equiv) or DTBP (2.0 equiv) as additives, respectively. The scope of this chemoselective glycosylation protocol was then briefly examined [\(Fig. 2](#page-2-0)). Selective glycosylation of the carboxylic acid in the acid alcohols 6–8 with glucopyranosyl ortho-hexynylbenzoate 1a under conditions A (0.1 equiv Ph_3PAu- OTf, 3.0 equiv $BF_3 \cdot OEt_2$, 2 equiv DBU, CH_2Cl_2 , 4 A MS, rt) was perfectly realized, leading to the corresponding ester glycosides 9, 11, and 13 in >84% yields; while the alcohol orthoesters were not detected or were in only trace amounts (<2%), and the bis-sugar derivatives were not detected at all (entries 1–3). Slightly better results were obtained when 2,3,4-tri-O-acetyl-L-rhamnopyranosyl orthohexynylbenzoate 1b was used as a donor to couple with acid alcohols 2 and 6–8, the corresponding ester glycosides (15, 18, 21, and 14) were formed exclusively in >87% yields (entries 4–7). Under conditions B (0.2 equiv Ph₃PAuOTf, 2.0 equiv DTBP, CH₂Cl₂, 4 Å MS, rt), glycosylation of the acid alcohols 6 and 7 with glucopyranosyl ortho-hexynylbenzoate 1a led to the orthoesters 10 and 12 in 82% and 94% yields, respectively; the ester glycosides were not detected (entries 8 and 9). However, the selective orthoester formation (under conditions B) with peracetyl-rhamnopyranosyl orthohexynylbenzoate 1b as a donor (and the acid alcohols 2, 6, and 7 as acceptors) was compromised with the further glycosylation of the remaining carboxylic acid group, providing the alcohol orthoesters (16, 19, and 22) in 61–69% yields and the bis-sugar derivatives (1[7](#page-3-0), 20, and 23) in \sim 17% yield (entries 10–12).⁷

In conclusion, we have disclosed an effective method for chemoselective glycosylation of acid alcohols using glycosyl ortho-hexynylbenzoates as donors; under the catalysis of PPh3AuOTf in the

Figure 2. Chemoselective glycosylation between alcohol and carboxylic acid with glycosyl ortho-hexynylbenzoate donors 1a and 1b.

presence of DBU/BF₃OEt₂ or DTBP, respectively, carboxylic acid glycosylation or alcohol orthoester formation could be effected selectively in good yields.

Technology of China (2009ZX09311-001) is gratefully acknowledged.

References and notes

-
- 1. Baran, P. S.; Maimone, T. J.; Richter, J. M. *Nature 2007, 446, 404–408.*
2. (a) Trost, B. M. *Science* **1983**, 219, 245–250; (b) Shenvi, R. A.; O'Malley, D. P.; Baran, P. S. Acc. Chem. Res. 2009, 42, 530–541.

Acknowledgments

Financial support from the National Natural Science Foundation of China (90713003, 20621062) and the Ministry of Science and

- 3. (a) Yu, B.; Sun, J. Chem. Asian J. 2009, 4, 642–654; (b) Yu, B.; Zhang, Y.; Tang, P. Eur. J. Org. Chem. 2007, 5145–5161; (c) Pellissier, H. Tetrahedron 2004, 60, 5123–5162.
- 4. (a) Bliard, C.; Massiot, G.; Nazabadioko, S. Tetrahedron Lett. 1994, 35, 6107–6108; (b) Peng, W.; Sun, J.; Lin, F.; Han, X.; Yu, B. Synlett 2004, 259–262; (c) Peng, W.; Han, X.; Yu, B. Synthesis 2004, 1641–1647; (d) Wang, P.; Li, C.; Zang, J.; Song, N.; Zhang, X.; Li, Y. Carbohydr. Res. 2005, 340, 2086–2096; (e) Zhu, C.; Tang, P.; Yu, B. J. Am. Chem. Soc. 2008, 130, 5872–5873; (f) Zhu, S.; Li, Y.; Yu, B. J. Org. Chem. 2008, 73, 4978–4985; (g) Gauthier, C.; Legault, J.; Rondeau, S.; Pichette, A. Tetrahedron Lett. 2009, 50, 988-991; (h) Gauthier, C.; Legault, J.; Lavoie, S.; Rondeau, S.; Tremblay, S.; Pichette, A. J. Nat. Prod. 2009, 72, 72–81; (i) Krishnamurty, H. G.; Dabholkar, K.; Maheshwari, N. Synth. Commun. 1987, 17, 1323–1329; (j) Schneider, G.; Sembdner, G.; Schreiber, K.; Phirney, B. O. Tetrahedron 1989, 45, 1355–1364; (k) Wen, X.; Sun, H.; Liu, J.; Cheng, K.; Zhang, P.; Zhang, L.; Hao, J.; Zhang, L.; Ni, P.; Zographos, S. E.; Leonidas, D. D.; Alexacou, K. M.; Gimisis, T.; Hayes, J. M.; Oikonomakos, N. G. J. Med. Chem. 2008, 51, 3540– 3554.
- 5. (a) Li, Y.; Yang, Y.; Yu, B. Tetrahedron Lett. 2008, 49, 3604–3608; (b) Li, Y.; Yang, X.; Liu, Y.; Zhu, C.; Yang, Y.; Yu, B. Chem. Eur. J. 2010. doi:10.1002/ chem.200902548. (A selective ester glycoside formation of oleanolic acid with an arabinose ortho-hexynylbenzoate has been applied in the synthesis of a cyclic triterpene saponin.); (c) Yang, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2009, 131, 12076– 12077.
- 6. For a comprehensive review on sugar 1,2-orthoesters, see: Kong, F. Carbohydr. Res. 2007, 342, 345–373.
- 7. All the new compounds that appeared in this work give satisfactory analytical data; some selected data are shown below. **3**: [α]²⁴ +59.6 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (m, 8H), 7.32 (m, 12H), 5.93 (t, J = 9.2 Hz, 1H), 5.90 (d, $J = 8.0$ Hz, 1H), 5.69 (m, 2H), 5.21 (br s, 1H), 4.48 (dd, $J = 2.0$, 11.6 Hz, 1H), 4.40 (dd, J = 5.2, 12.4 Hz, 1H), 4.21 (m, 1H), 3.07 (m, 1H), 2.72 (m, 1H), 0.90, 0.87, 0.77,
0.74, 0.68, 0.67, 0.39 (s, each 3H); ¹³C NMR (100 MHz, CDCl₃) *δ* 175.7, 166.0, 165.6, 165.1, 164.7, 142.9, 133.4, 133.3, 133.2, 133.0, 129.9, 129.8, 129.7, 129.6, 128.6, 128.4, 128.3, 122.7, 91.9, 78.8, 72.9, 72.8, 70.4, 69.3, 62.7, 55.1, 47.4, 46.8,

45.7, 41.5, 40.9, 38.9, 38.6, 38.3, 36.8, 33.6, 32.9, 31.8, 30.5, 29.6, 28.1, 27.7, 27.1, 25.5, 23.4, 23.3, 22.6, 18.2, 16.5, 15.6, 15.2; HRMS (MALDI) m/z calcd for $C_{64}H_{74}O_{12}$ Na [M+Na]⁺ 1057.5071, found 1057.5073. Compound 4: $[\alpha]_D^{27}$ $+23.3$ (c) 4.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (m, 8H), 7.47 (m, 12H), 6.04 (d $J = 5.2$ Hz, 1H), 5.72 (m, 1H), 5.40 (d, $J = 8.8$ Hz, 1H), 5.22 (t, $J = 3.6$ Hz, 1H), 4.76 $(t, J = 4.0$ Hz, 1H), 4.44 (dd, $J = 3.6$, 12.0 Hz, 1H), 4.29 (dd, $J = 5.2$, 11.6 Hz, 1H), 3.97 (m, 1H), 3.12 (m, 1H), 2.77 (dd, J = 4.4, 13.6 Hz, 1H), 1.07, 0.90, 0.88, 0.85, 0.85
0.82, 0.73, 0.68 (s, each 3H); ¹³C NMR (100 MHz, CDCl₃) δ 184.7, 166.2, 165.4 164.8, 143.8, 137.9, 133.9, 133.7, 133.2, 130.3, 130.2, 130.0, 129.4, 129.3, 128.8, 128.6, 128.5, 128.2, 126.5, 122.8, 122.6, 97.7, 81.7, 72.9, 69.6, 68.7, 68.0, 64.3, 60.7, 55.8, 47.8, 46.7, 46.1, 41.7, 41.0, 39.4, 38.8, 38.7, 37.0, 34.0, 33.3, 32.7, 32.6, 30.9, 30.0, 28.5, 27.9, 26.2, 25.1, 23.8, 23.6, 23.1, 18.6, 17.4, 16.8, 15.5, 14.5; HRMS (MALDI) m/z calcd for C₆₄H₇₄O₁₂Na [M+Na]⁺ 1057.5080, found 1057.5073.
Compound **18**: $[x]_D^{24}$ -44.4 (c 1.1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.01 (s Compound **18**: $[\alpha]_D^{(2)}$ -44.4 (c 1.1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.01 (s 1H), 5.23 (m, 2H), 5.12 (t, J = 9.9 Hz, 1H), 3.93 (m, 1H), 3.60 (dd, J = 11.1, 22.5 Hz 2H), 2.16 (s, 3H), 2.06 (s, 3H), 1.99 (s, CDCl3) d 174.6, 170.2, 169.7, 90.9, 70.1, 69.5, 69.1, 68.9, 68.3, 44.8, 21.8, 20.7, 20.6, 20.5, 17.4; HRMS (MALDI) m/z calcd for C₁₇H₂₆O₁₀Na [M+Na]⁺ 413.1416
found 413.1418. Compound **19**: $[\alpha]_D^{24}$ +10.0 (c 1.1, CHCl₃); ¹H NMR (300 MHz
CDCl₃) δ 5.41 (br s, 1H), 5.10 (dd, J = 3.3, 9.9 (br s, 1H), 3.50 (m, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.70 (s, 3H), 1.20 (d, J = 6.3 Hz
3H), 1.12 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 169.7, 123.7, 97.1, 76.2 70.5, 70.4, 69.1, 42.8, 24.0, 22.5, 22.3, 20.9, 20.7, 17.5; HRMS (MALDI) m/z calcd for C₁₇H₂₆O₁₀Na [M+Na]⁺ 413.1415, found 413.1418. Compound **20**: $[\alpha]_D^{24}$ -26.6 (c 0.4, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 5.99 (d, J = 1.5 Hz, 1H), 5.41 (d $J = 2.4$ Hz, 1H), 5.25 (m, 2H), 5.13 (m, 2H), 5.01 (t, $J = 9.6$ Hz, 1H), 4.54 (m, 1H), 3.92 (m, 1H), 3.58 (m, 1H), 3.48 (m, 2H), 2.17 (s, 3H), 2.11 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H), 1.71 (s, 3H), 1.22 (m, 12H); 13 C NMR (100 MHz, CDCl₃) δ 173.3, 170.3, 170.0, 169.8, 169.7, 123.9, 97.1, 90.7, 76.7, 70.5, 70.4, 69.1, 69.0, 68.7, 68.6, 68.5, 43.4, 24.7, 22.4, 22.0, 20.8, 20.7, 20.6, 17.5, 17.4; HRMS (MALDI) m/z calcd for C₂₉H₄₂O₁₇Na [M+Na]⁺ 685.2310, found 685.2314.